Tag Archives: technology

Women in Science: Komal Dadlani: Making Available Science Available to All

Robert Hooke engineered a better microscope and an accurate clock.
Isaac Newton is credited with the invention of the reflecting telescope.
Robert Boyle’s experiments required the development of a vacuum pump.
The practice of observational science demands good instruments; how can you tell how fast the ball rolls without a way to accurately count the seconds?
Four centuries of invention have supplied scientists with a large array of technologies that make modern scientific investigation possible.
Unfortunately, these technologies are mostly available at the high end and that unfortunately also means, “not in schools.”
This doesn’t mean that the technology for schools is not available, but it is expensive, especially for schools that serve economically challenged communities.
Komal Dadlani who was born in Chile, where only 2 out of every ten schools has a science lab, was fortunate enough to graduate from one that did and thus was able to go to university and graduate with a master’s degree in biochemistry.
To share her good fortune, she searched for a way to provide the opportunity for a science education with others.
Her “ah ha!” moment came with the realization that while schools don’t have well-equipped labs, large proportions (between one-third to more than half) of their students do have smart phones.
The development of the smartphone, first with the iPhone from Apple and then from a host of vendors has meant that technologies that were once available only to high-end users like NASA are integrated into smartphones.
Magnetometers make the phone’s compass possible; promixity sensors signal the phone’s operating system when the phone is placed next to the ear to take or make a phone call. Quite ordinary smartphones have gyroscopes, photodetectors, acceleromters, barometers, thermometers, sensors that make them “smart.”
So while K-12 schools that do not have laboratory equipiment, these schools could take advantage of the smartphones that many of their students carry with them daily?
Tapping the power of the smartphone sensors was how Ms Dadlani and colleagues solved the problem.
Komal and her team is now in the U.S. in the process of creating a new business which they call Lab4U.
“‘We leverage these senors and design experiments,’ she explains'” in an April 7 article in People magazine.
They have release two apps (both available for both IOS and Android), one for physics and one for chemistry.
One (which I have installed on my relatively old iPhone 5) is Lab4Physics.
Once you create a free account, the user has accesss to camera, the accelerometer, the sonometer and the speedometer that can capture and graph data. You can “play physics” and do experiments in movement, force and energy, and sounds.
There is also Lab4Chemistry uses software to transform your smarphone into a colorimeter that allows for the calculation of concentrations of chemical solutions and to use spectrophotometry.
The company is still a startup and not established as yet but it demonstrates a key idea that has driven STEM for four centuries: “it’s not strength. It’s not intelligence. It’s ADAPTABILITY TO CHANGE” that makes new things possible. (https://lab4u.co/lab4physics/)
Resources:
Crunch Base: Komal Dadlani. Retrieved from https://www.crunchbase.com/person/komal-dadlani#/entity

Lab4U

Toyota Mothers of Invention: Retrieved from http://paidpost.nytimes.com/toyota/mothers-of-invention-presented-by-women-in-the-world.html

Changing the Relationship Between Knowledge and the Child

Robotics combines engineering, engineering design, and technology in ways that, in the words of Marina Bers of the Tufts DevTech group, “connects the T and the E of STEM” and certainly merits a prominent position in STEM education.
Robotics appears to fit into the STEM sequence as a subject for older students. At the Tufts DevTech research group however, robotics has been introduced successfully to pre-Kindergarten children reasoning that because interventions that begin early are, in the long run, less costly and also have greater impacts than those that begin later, robotics should be begun early
Watch this DevTech produced video clip that documents the robotics work of young children.
The spirited dancing of the children is accompanied by dance movements enacted by two-wheeled robots, which while less enthusiastic are more rhythmic and more disciplined than the children’s.
It is notable that although the robots are better at following the music’s rhythms, the robots’ movements were programmed by the same somewhat syncopated children. The video supports the case that young children are quite capable of engaging in robotics in non-trivial ways.
In their work with young children the DevTech research group uses a computer language called CHERP (Creative Hybrid Environment for Robotic Programming). The CHERP language substitutes a set of interlocking wooden blocks for typed in text. Each block is labeled with a graphic representing a command such as FORWARD, BACKWARD, BEGIN, or END. The program is “written” by assembling the commands by arranging the blocks. “The shape of the interlocking blocks and icons creates a physical syntax that prevents the creation of invalid programs and also eliminates the possibility of typographical errors,” notes Marina Bers. Once the blocks have been arranged to create a program for the robot to follow, a scanner on the robot is used to read the program into the robot’s memory.
The behavior of the robot will mimic the program developed by the child-programmer. Because the program is represented by the arrangement of blocks, children are able to make changes to the program by a rearrangement of the blocks. In addition, they can observe one another’s work and to see how other children have solved a particular problem (“how did you make the robot spin five times?”)
In a number of published studies Bers and her colleagues have collected evidence that
Robotics offers young children and teachers a new and exciting way to tangibly interact with traditional early childhood curricular themes. This study demonstrates that it is possible to teach Pre-Kindergarten children to program a robot with developmentally appropriate tools, and, in the process, children may not only learn about technology and engineering, but also practice foundational math, literacy, and arts concepts. While there are many challenges to overcome when implementing robotics in a busy Pre-Kindergarten classroom, our work provides preliminary evidence that teaching young children about and through computer programming and robotics using developmentally appropriate tools may be a powerful tool for educating children across multiple domains.
What is the reason that in addition to robotics and computer programming the “children may not only learn about technology and engineering, but also practice foundational math, literacy, and arts concepts?”
Seymour Papert who was a developer of the computer language LOGO in the 1970s asserted that a programming language like LOGO (or CHERP) changes the relationship between the child and knowledge.
He argued that most school instruction was based on “transmission” or the passing of “knowledge” from its possessor (the teacher) to the receiver (the student). When computers are used in schools, Papert’s argument continued, they are used to “program the child” in the same way that teachers program the child with the “required” knowledge.
The LOGO computer language was designed to enable the child to communicate with the computer. LOGO included a graphical Turtle that the computer’s user could move around on the screen. RIGHT would cause the Turtle to turn 90° to the right. FORWARD 10 would command the Turtle to move 10 paces ahead and so forth.
In the LOGO environment, the traditional relationship between the child and the knowledge was changed.
[t]he child, even at preschool ages, is in control: The child programs the computer. And in teaching the computer how to think, children embark on an exploration about how they themselves think. The experience can be heady: Thinking about thinking turns the child into an epistemologist, an experience not even shared by most adults. (Papert)
In addition, in the usual “teacher as source of knowledge,” model the child is placed in the “got it right/wrong” mode, and worse may not know either what was wrong or how to fix the error.
As Papert notes, when you learn to program, you seldom get it right the first time. “Learning to be a master programmer is learning to become highly skilled at isolating and correcting “bugs,”….
This is also the case with products of the intellect; they are usually neither “right” or “wrong” but are “buggy” works in progress.
If Papert is correct, changing the relationship between the child and knowing is fundamental to learning. Robotics with young children is perhaps a place to begin the change.
Resources:
Epistemologist: one who studies epistemology: the theory of knowledge, especially with regard to its methods, validity, and scope. Epistemology is the investigation of what distinguishes justified belief from opinion.
Marina Umaschi Bers, Safoura Seddighin, and Amanda Sullivan
Ready for Robotics: Bringing Together the T and E of STEM in Early Childhood Teacher Education Jl. of Technology and Teacher Education (2013) 21(3), 355-377

Sullivan, A., Kazakoff, E. R., & Bers, M. U. (2013). The Wheels on the Bot go Round and Round: Robotics Curriculum in Pre-Kindergarten. Journal of Information Technology Education: Innovations in Practice, 12, 203-219. Retrieved from http://www.jite.org/documents/Vol12/JITEv12IIPp203-219Sullivan1257.pdf

Seymour Papert (1980). Mindstorms, Basic Books.

“I really hope it works:” Digital Technology for Instruction

 

There are many classrooms like English teacher Amy Furman’s featured in a 2011 article Classroom of the Future: Stagnant Scores.

Amy’s thirty-one students are studying Shakespeare’s As You Like It, taking advantage of 21st century digital technology.

Amy is not “giving the students notes” but is circulating among her students observing, offering comments and suggestions as her laptop-equipped students engage themselves with the play in very nontraditional ways.

In the place of an essay on the play’s plot, the students are blogging, or creating Facebook pages for the characters, while others are writing about why the love-smitten Silvius would like a particular rap by Kanye West.

Amy expressed her pleasure with what is going on in her “very dynamic classroom” adding “I really hope it works.”(Richtel, 2011)

This technology-rich classroom is one outcome of a 2005 referendum in which the voters passed a bond referendum that gave the Kyrene School District in Arizona $45 million to “transform the very nature of the classroom, turning the teacher into a guide for students who will learn at their own pace on Internet-connected devices.”

The high cost of the technology needed for the transformation makes the question whether it works a matter of concern.

In 2011, as now, the evidence that such investment in digital technology has been at best ambiguous. Overall, the data that supports the use of technology is “pretty weak” according to Tom Vander Ark, former executive director for education and an investor in educational technology companies.(Richtel, 2011)

In the eleven years after it passed its technology referendum and five years since Amy Furman expressed both the pleasure of teaching in a technology-rich classroom as well as her “hope” that it works, Kyrene School District remains a technology-rich school system. The students in its nineteen elementary and middle schools perform above average, earning an “A” ranking in the Arizona school accountability system.

Its 2016 Website cites the district’s “technology enhanced curriculum” and the fact that

Throughout the entire district, every classroom is enhanced with a variety of technology tools: wireless laptop computers; many with multi-touch display, a projector, a document camera, and iPads, so that students have hands-on access to technology as part of their everyday instruction and learning. Elementary classrooms also have interactive whiteboards. Students use industry-standard word processor and spread sheet programs, specialized graphics and education software, and web-based applications and information sources. Teachers participate in regular staff development and mentoring programs to help them to better use these incredible tools. (Kyrene School District)

Is Kyrene’s success the result of its rich technology or because in it also has both technology along with a well-developed system of instructional support for its teachers: academic coaches and educational technology specials for all subjects?

In education there are no “silver bullets” whether educational technology, textbooks or curriculum.   “One-to-one laptop programs may simply amplify what’s already occurring—for better or worse—in classrooms, schools, and districts. (Goodman, 2011)

If Kyrene is a positive example of the implementation of educational technology, what happened with the Los Angeles Unified School District’s Instructional Technology Initiative (ITI) is a negative one.

The debacle began in 2013 with a district investment of $1.3 billion that was to put an Apple iPad loaded with instructional software from educational giant Pearson in the hands of every child in every school. But by 2015 the district wanted out of the deal claiming that the software didn’t work and that the iPads had fatal security holes.

An observer noted that if one of the largest school districts in the nation, one of the largest educational publisher and the largest technology company couldn’t successfully integrate instructional technology into classrooms, who could? (Lapowski, 2015)

The answer lies up the coast from Los Angeles,  where the Milpitas Unified School District also has made a significant investment in personal technology and has successfully used blended learning to create personalized instruction for its students.

The contrast between the two school districts in how their instructional technology programs came about is instructive.

In Los Angeles, the Instructional Technology Initiative began at the top as did the Milpitas project. However, in Milpitas, Cary Matsuoka, the superintendent began by asking his principals the question: “If you could design the school of the future, what would it look like?”

His goal was to “give principals and teachers the autonomy to determine what would work best for their schools.” Mandating from the top, he reflected, and you “get compliance, where people go through the motions.”

The answers also got him and his district to the understanding that one-to-one wasn’t needed because the principals proposed a “rotation model” in which students would  use the devices in shifts.

The district chose Chromebooks; they are less expensive than iPads because they are cloud based, central management and updating are less of a hassle.

As a departing Board of Education recalled about his eight years on the Board”We went through both academic and sport renewal and modernization, implemented blended learning and common core, build a high-tech infrastructure and new athletic facilities.… For the past eight years, we saw student achievement improved significantly, we are also financially solid.” (Mohammed, 2016)

The contrasting examples provided by Kyrene and Milpitas versus the LAUSD debacle support the contention that educational technology if it is implemented based on a shared vision that include the identification of the actual problem to be solved, if the school and district leadership supports all aspects of the implementation. Implementation requires the development of a technology infrastructure and a culture of professional learning that includes the community, parents and guardians, all school personnel, and the development of a coaching/mentoring model. This last is important because the technology will be a catalyst for changing the connections between learning and instruction.

Resources:

Greaves, T., Hayes, J., Wilson, L., Gielniak, M., & Peterson, R. Project Red: Revolutionizing Education: Nine Keys to Student Achievement and Cost Effectivenss. Retrieved from https://www.k12blueprint.com/sites/default/files/Project-RED-Technolgy-Factor.pdf

Goodman, B. (2011). Research Says…/One-to-One Laptop Programs Are No Silver Bullet. EdLeadership, 68), 78-79. Retrieved from http://www.ascd.org/publications/educational_leadership/feb11/vol68/num05/One-to-One_Laptop_Programs_Are_No_Silver_Bullet.aspx

Lapowski, I. (2015). What Schools Must Learn From LA’s IPad Debacle. Wired. Retrieved from https://www.wired.com/2015/05/los-angeles-edtech/

Mohammed, Aliyah (2016). Milpitas: School boar names permanent MUSD superintendent. The Mercury News, November 17, 2016. Retrieved from http://www.mercurynews.com/2016/11/17/milpitas-school-board-names-permanent-musd-superintendent/

Richtel, M. (2011c). In Classroom of Future, Stagnant Scores. New York Times. Retrieved from http://www.nytimes.com/2011/09/04/technology/technology-in-schools-faces-questions-on-value.html